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Abstract. Seven different RbxCs2−xZnCl4 crystals were grown with 0< x < 2 while
seven different KxCs2−xZnCl4 crystals were grown with 0< x 6 1, the limit valuex = 1
corresponding to the clearly defined KCsZnCl4 compound. A crystallographic study of these
solid solutions was performed by comparison with the pure Cs2ZnCl4 crystal. Structures were
solved in thePnma space group for the rubidium solid solutions and in theP 212121 space
group for the potassium ones. It was shown that the distribution of Cs and Rb, or Cs and K,
among the two cationic sites called A1 and A2 was not random: Rb and K exhibit a higher
affinity for the smallest cavity, the A2 site. While the phase transition of Rb2ZnCl4 and K2ZnCl4
can be interpreted as rotations of the rigid ZnCl4 tetrahedra mainly around thea direction, the
substitution of Cs by Rb or K not only supplies thea rotation of ZnCl4 tetrahedra but, as shown
by a first-order approximation model, also changes their size and shape.

1. Introduction

Potassium tetrachlorozincate K2ZnCl4 undergoes the classical phase sequence for the A2BX4

compounds: starting from the normal paraelectric orthorhombic high-temperature phase
(N) (space groupPnma), the crystal transforms to an incommensurate phase (INC) at
Ti = 553 K [1, 2]. In the incommensurate phase, the crystal lattice is modulated along the
a direction with the wave number modulation vectorq = (1/3− δ)a0, wherea0 represents
the reciprocal lattice parameter of the normal phase. The commensurate ferroelectric
phase (C) (space groupPn21a at Tc = 403 K [3] is caused by the lock-in ofq at the
commensurate valueq = 1/3a0. Thus, the unit cell is tripled along thea axis. Recent
studies displayed other phase transitions aroundT1 = 250 K and 145 K [4, 5]. Rubidium
tetrachlorozincate Rb2ZnCl4 exhibits the same phase transitions but with lower transition
temperatures:Ti = 302 K, Tc = 189 K [6, 7] andTl = 75 K [8–11]. On the other
hand, caesium tetrachlorozincate Cs2ZnCl4 does not exhibit any phase transition: at each
temperature it belongs to the normal paraelectric phase (space groupPnma).

The crystal structures of each phase of these three compounds have been widely studied
by x-ray neutron diffraction and other methods. For example, see [12–15] for K2ZnCl4
[16–18] for Rb2ZnCl4 and [19] Cs2ZnCl4.
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The lattice structure of the normal phase (space groupPnma) consists of four symmetry-
related groups of one ZnCl4 tetrahedron and two alkaline atoms (Cs, Rb or K). As an
example, the projection along thec axis of the Cs2ZnCl4 structure is presented in figure 1(a).
Each atom is in a special position except for the equivalent chlorine atoms Cl3 and Cl4 which
are in a general position. The Cs1 and Cs2 cations can occupy two crystallographically non-
equivalent sites, labelled A1 and A2. Another projection given in figure 1(b) shows that
the normal phase structure can also be described as the juxtaposition of two parallel chain
types. The caesium cations situated in the A1 site build up an alternating linear chain
(usually labelled asβ) with the tetrahedra:. . . Cs+(ZnCl4)2−Cs+ . . . parallel to thea axis.
The second chain(α) consists solely of caesium positioned in the A2 site. This zig-zag
chain,. . . Cs+–Cs+ . . . , is situated in a symmetry plane, parallel to thea direction, and its
average position corresponds to the position of the pseudo-hexagonala axis of the A2BX4

type structure.
The instability presented by these compounds is interpreted as rotations of rigid ZnCl4

tetrahedra, which are the most voluminous entities of the structure [17]. The existence of
an incommensurate lattice instability, or its absence for CsZnCl4, depends basically on the
effective volume of the alkaline cation compared with the size of the ZnCl4 tetrahedra [20].
The latter can be compared to rigid and undistorted entities. If they are sufficiently free,
the structure is stable; if they are compressed in the normal phase, the structure is unstable
and a transition is observed when the temperature decreases.

In order to obtain a better insight into the transition mechanism of the A2ZnCl4 materials,
we decided to vary some stability parameters. Thus, we synthesized solid solutions
composed of the same tetrahedron ZnCl4, and one cation with increasing atomic radii:
K+, Rb+ and C+. We performed a systematic structural study of several RbxCs2−xZnCl4
and KxCs2−xZnCl4 compounds. The structural data permitted us to obtain information on
the occupation probability in host sites and on the behaviour of ZnCl4 tetrahedra in mixed
compounds.

Experimental details are presented in section 2. Subsection 3.1 is devoted to the
structural determination of the two types of mixed compound. finally, subsection 3.2 is
related to the phase transition mechanism study for our compounds. This study used the
thermal agitation of the ZnCl4 tetrahedra and the static deviations of these tetrahedra from
their position in Cs2ZnCl4.

2. Experimental details

2.1. Sample preparations

Homogeneous composition in the whole crystal is the essential condition that allows the
study of the alkaline cation distribution in our mixed compounds. The monocrystals we have
used were grown by the procedure described by Arendet al [21] based on a temperature
difference growth with thermally enforced convention and the use of saturated solutions
in equilibrium with precipited solid phase. This method enables us to maintain a constant
concentration of solution around the crystal during the whole growth process. Two different
growth methods provided us with two kinds of sample:

(i) small samples of about 0.3 × 0.3 × 0.3 mm3 for the radiocrystallographic studies;
(ii) bigger samples (1 or 2 cm3) for the dielectric measurements.

RbxCs2−xZnCl4 crystals were all grown in the same conditions:T = 313 K, 1T = 3 K.
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Figure 1. The crystal structure of Cs2ZnCl4 viewed along (a) thec axis and (b) theb axis.
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Figure 2. The experimental dependence ofx in the crystal onx ′ in the mother solution for
(a) the RbxCs2−xZnCl4 mixed crystals and (b) the KxCs2−xZnCl4 mixed crystals.

The supersaturated solutions were obtained by dissolving weighed amounts of RbCl, CsCl
and ZnCl2 in a constant volume of warm water (molar ratiox : 2 − x : 1). For the
KxCs2−xZnCl4 crystals, we replaced RbCl with KCl and the temperature conditions were
T = 293 K, 1T = 3 K.

The composition of the mother solution was different of that of the mixed crystals, and
analysis was necessary for each RbxCs2−xZnCl4 or KxCs2−xZnCl4 crystal we studied. The
chemical analysis, using atomic emission spectroscopy, was performed for each composition.
The results were compared at the end of each structure refinement by comparison with the
x value calculated from the occupation probabilities of K, Rb or Cs in the two cationic
sites of the structure defined above. The results obtained by the two methods are in good
agreement.

2.1.1. RbxCs2−xZnCl4 compounds. Seven samples were synthesized corresponding to
(1) x = 0.34, (2) x = 0.54, (3) x = 0.71, (4) x = 1.11, (5) x = 1.31, (6) x = 1.59
and (7)x = 1.89.

Figure 2 shows the correspondence betweenx andx ′ defined in the crystal and in the
mother solution respectively.

2.1.2. KxCs2−xZnCl4 compounds. Crystals with seven different concentrations were also
grown but with 0< x 6 1: (1′) x = 0.22, (2′) x = 0.27, (3′) x = 0.43, (4′) x = 0.62,
(5′) x = 0.70, (6′) x = 0.85 and(7′) x = 1.00.

Several series of crystallizations were performed. Figure 2 gives the experimental
dependence ofx on x ′. Data are shown for three different crystallizations labelled 1–3,
for which the process was slightly different. Only compounds with 0< x 6 1 can be
elaborated. When the potassium concentration increases in the solution up tox ′ = 1.995,
we obtain crystals with a limit composition KCsZnCl4.
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2.2. Characterization measurements

2.2.1. Calorimetric experiments.Calorimetric measurements were performed on a Perkin–
Elmer DSC-7 differential scanning calorimeter at a scanning speed of 10 K min−1 on
cooling/heating. For all experiments, the sample, about 10 and 80 mg, was hermetically
sealed in metal capsules.

2.2.2. X-ray experiments.The pattern of Bragg reflections was recorded at room
temperature, measured by the precession method with Cu Kα radiation. This allowed
us to check the quality of the sample and the absence of the incommensurate phase.

Figure 3. Evolution of the cell parameters versus the compositionx in (a) the RbxCs2−xZnCl4
mixed crystals (forx = 2, the results are referred to [18]) and (b) the KxCs2−xZnCl4 mixed
crystals.

Data for structure determination were collected on an Enraf–Nonius four-circle
diffractometer with monochromatized Mo Kα radiation (λ = 0.710 73 Å; graphite
monochromator), using a microVAX 3100 computer. Lattice parameters were refined from
setting angles of 25 reflections in the 8◦ < θ < 15◦ range. About 7000 reflections with
1◦ < θ < 30◦ were collected using theω/2θ scan technique. During each data collection,
three standard reflections were measured at 2 h intervals to verify that the intensity variation
was negligible. The data were reduced and corrected for Lorentz and polarization effects,
with semi-empirical absorption corrections, using the MolEN [22] programs. They were
also used for resolutions and refinements of the structures. An improvement of the MolEN
programs permitted us to refine the occupation probability in host sites. In fact, a new
refined parameter was introduced in the basic programs. This parameter is the occupation
probability, at one site, for caesium, rubidium or potassium ions. In practice, only one
multiplicity is refined; the second one is deducted so that the sum at one site is constant
and equal to one. Obviously, the multiplicity of each cation (K, Cs or Rb) calculated with
these refinements is an average distribution for a great number of cells.
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3. Results and discussion

3.1. Structural rules

3.1.1. The space group and unit cell.On one hand the extinction rules were observed for
0kl with h + l = 2n + 1 andhk0 with h = 2n + 1 reflections without any violation for
each RbxCs2−xZnCl4 crystal. Therefore, the space group could be the non-centrosymmetric
groupPn21a (No 33) or the centrosymmetric groupPnma(No 62). Following the results of
the statisticsN(Z) test [23], which suggests the existence of the inversion, structures were
resolved in the centrosymmetric space groupPnma. Figure 3(a) presents the composition
dependence of the lattice parameters, at room temperature. One can see that the lattice
parameterb presents a continuous decrease withx while parametersa and c exhibit a
discontinuity. We notice a slope break probably nearx = 1 with a continuous variation on
each side.

On the other hand, we observed that in the KxCs2−xZnCl4 crystals a few extinctions
0kl and hk0 are not verified according to thePnma and Pn21a extinction rules. These
reflections are weak and their number increases withx. This release of extinctions is due to
the K substitution. In order to retain maximum information, we resolved the structures in the
P 212121 space group (extinction rulesh00, h = 2n + 1; 0k0, k = 2n + 1; 00l, l = 2n + 1).
A linear decrease in thea, b andc parameters with increasing potassium concentration can
be seen in figure 3(b)(0 6 x 6 1).

3.1.2. Structure and alkaline distribution.
RbxCs2−xZnCl4 mixed crystals.Heavy-atom coordinates from the assumed isostuctural

Cs2ZnCl4 compound [19] were used as an initial model for the resolution of the first
compound: Rb0.34Cs1.66ZnCl4. Then, chlorine atoms were located by Fourier difference
synthesis. The good evolution of the refinement allowed the introduction of rubidium in the
two cationic sites. At the beginning of the multiplicity refinement, the occupancy of Cs and
Rb was assumed to be equal at the A1 and A2 sites, but refinements gave rapid convergence
(R = 0.017 andRw = 0.024) to site occupancies zero for Rb(1) (Rb in the A1 site) and
0.332 for Rb(2) (Rb in the A2 site).

For the other compound, resolution and refinement were performed in a similar way,
using the atomic positions of the compound having the nearest compositionx.

The substitution of caesium for rubidium modifies weakly the structure of the pure
Cs2ZnCl4 compound. At room temperature, each crystal is isostructural to the Cs2ZnCl4
normal phase (space groupPnma), so the structure of all the RbxCs2−xZnCl4 compounds is
illustrated by the projections shown in figure 1. The distribution of Cs and Rb among the
two cationic sites was studied in most detail. Table 1 lists the refined occupation rate of
Cs and Rb in each of the two available sites, A1 and A2. It is clear that the substitution is
not random: Rb and Cs are not equally distributed among the two cationic sites. Rubidium
atoms exhibit a higher affinity for the A2 site and this explains the specific dependence of the
lattice parametersa, b andc on the compositionx (figure 3). For 06 x < 1, the substitution
of smaller rubidium cations for caesium in the A2 site exclusively results in a contraction
of the α chain (figure 1(b)), which is solely composed of alkaline cations. This leads to an
important decrease in the cell parametersa andc (figure 3(a)). For 1< x 6 2, the rubidium
cations can be located in the A1 site which belongs to theβ chain. Along thec direction,
the ‘width’ of this chain is essentially determined by the ZnCl4 tetrahedron size, which
varies weakly withx (see subsubsection 3.2.3). So, thec parameter is nearly constant. On
the other hand, replacement of caesium by a smaller cation allows the tetrahedra to become
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Table 1. Occupation rates in the two different sites of the RbxCs2−xZnCl4 mixed crystals.

A1 site A2 site

Cs(1) Rb(1) Cs(2) Rb(2)
Sample a (1 − a) b (1 − b) x = 2 − a − b Chemical formula

1 1 0 0.658 0.342 0.34 Rb0.34Cs1.66ZnCl4
2 1 0 0.462 0.538 0.54 Rb0.54Cs1.46ZnCl4
3 1 0 0.288 0.712 0.71 Rb0.71Cs1.29ZnCl4
4 0.889 0.111 0 1 1.11 Rb1.11Cs0.89ZnCl4
5 0.688 0.312 0 1 1.31 Rb1.31Cs0.69ZnCl4
6 0.406 0.594 0 1 1.59 Rb1.59Cs0.41ZnCl4
7 0.109 0.891 0 1 1.89 Rb1.89Cs0.11ZnCl4

Table 2. Occupation rates in the two different sites of the KxCs2−xZnCl4 mixed crystals.

A1 site A2 site

Cs(1) K(1) Cs(2) K(2)
Sample a (1 − a) b (1 − b) x = 2 − a − b Chemical formula

1′ 1 0 0.784 0.216 0.216 K0.22Cs1.78ZnCl4
2′ 1 0 0.729 0.271 0.271 K0.27Cs1.73ZnCl4
3′ 1 0 0.565 0.435 0.435 K0.43Cs1.57ZnCl4
4′ 1 0 0.379 0.621 0.621 K0.62Cs1.38ZnCl4
5′ 1 0 0.303 0.697 0.697 K0.70Cs1.30ZnCl4
6′ 1 0 0.150 0.850 0.850 K0.85Cs1.15ZnCl4
7′ 1 0 1 1 1 KCsZnCl4

closer and causes a considerable decrease of thea parameter for 1< x 6 2. Finally, the
atomic arrangement given by the projection in figure 1(a) makes it clear that theb value is
mainly determined by the tetrahedron size, so it is nearly constant for 06 x 6 2.

KxCs2−xZnCl4 mixed crystals. Structures were resolved and refined in the same way
as the compounds previously discussed. A different situation occurs in this case because
the potassium introduction caused the removal of the symmetry planes and of the inversion
which were present in the pure compound Cs2ZnCl4: a small amount(x = 0.22) is sufficient
to change the structure of the pure compound, and these changes become more important
when x increases. As an example, figure 4 shows projections of the KCsZnCl4 structure
along thec andb axes. They exhibit the disappearance of the symmetry planes and of the
inversion. In particular, figure 4(a) shows well the loss of them mirror perpendicular to
the b axis.

The occupation rates of potassium and caesium atoms in each of the two available sites
are listed in table 2. The substitution is not random. When we replace Cs by K in Cs2ZnCl4,
we never observe K cations in the A1 site. This leads to a limit composition KCsZnCl4, in
agreement with the crystal growth analysis.

The exclusive substitution in the A1 site clarifies the evolution of the lattice parameters
shown in figure 3(b). This evolution is explained in the same way as for the RbxCs2−xZnCl4
compounds with 06 x < 1.

3.1.3. Site characterization.In order to explain the non-random substitution in the A1

and A2 sites, we have specially studied the cavities of these two sited for both the solid
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Figure 4. The crystal structure of KCsZnCl4 viewed along (a) thec axis and (b) theb axis.
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solutions and the pure compounds. Note that for the pure compounds the structural results
are referred to [19] for Cs2ZnCl4, [18] for Rb2ZnCl4 and [13] for K2ZnCl4.

First, A1 and A2 do not have the same environment. The A1 site has 11 first neighbours
(chlorine atoms) at distances which are well superior to those observed for the A2 site; the
latter is surrounded by only nine chlorine atoms. As a consequence, since it is surrounded
by more atoms, A1 appears more spherical than A2. So, it seems logical that the potassium
and rubidium cations preferably occupy the A2 site because they are less electropositive,
and therefore less spherical, then the caesium cation.

Furthermore, we performed calculations in order to determine the cavity volumeVc of
each site. For these calculations, cavities were considered as polyhedra whose vertices are
then chlorine atoms (n = 9 or 11) surrounding the potassium, rubidium or caesium cations.
These polyhedra were divided into 2n-4 tetrahedra, which correspond to the 2n-4 possible
choices of three of then surrounding chlorines (a cation potassium, rubidium or caesium is
the vertex).

At first, the calculations were performed using the coordinates of the surrounding
chlorine atoms. The knowledge of the atomic positions allowed us to calculated the volume
of each tetrahedron. The sum of these last gives the volumeVC of the cavities. Then we
also calculated the volumeVCl occupied by the chlorine anions inside the cavities. The Cl
anions were assumed to be spherical (rCl− = 1.81 Å [24]). For each tetrahedron vertex
(labelled i) located at the centre of a chlorine atom, the solid angle�i , interior to the
tetrahedron, has been determined and the total volume of chlorine inside the tetrahedra is
obtained by

Vt =
∑

i

4π

3
(rCl−)3 �i

4π
.

Another sum leads to the total volumeVCl occupied by the chlorine atoms inside each cavity.
So the differenceVc −VCl gives the free volumeVf which is left for the alkaline cations in
each site. These calculations were performed for each solid solution and pure compound.
The results are presented in figure 5. As expected, the substitution of the smaller Rb or K
cation for Cs results in a more important decrease of the A2 site volume for 06 x 6 1 and
of the A1 site volume for 16 x 6 2. In both cases, the A1 site is always more expended
(about+40%) than the A2 site.

Moreover, other calculations performed with the KxCs2−xZnCl4 solid solutions and
reported in a previous paper [25] indicate that the calculated electrostatic potential in both
sites are different. We observe that the potential of the A1 site is clearly flat, even though
the potential of the site A2 is a simple well.

It appears that we can start from the Cs2ZnCl4 pure compound and can easily substitute
the Cs cation, which occupies the ‘narrow’ A2 site, for the smaller Rb or K cation
(rCs+ = 1.67 Å, rRb+ = 1.48 Å, rK+ = 1.33 Å [24]) until this site is completely filled
(x varying from zero to unity). In contrast, the substitution in the A1 site is only possible
with rubidium because, in the presence of caesium, the potassium cation is too small and
cannot stay in the large A1 site, which does not present an equilibrium position.

3.2. The phase transition mechanism

3.2.1. Phase transition temperature.Calorimetric measurements of KxCs2−xZnCl4 single
crystals were reported in a previous paper [25].

For the RbxCs2−xZnCl4 crystals, a great number of heating and cooling cycles were
performed between 100 and 400 K. In Rb1.89Cs0.11ZnCl4, they show the presence of two
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Figure 5. The composition dependence of the volumesVf for each site in (• ) the
RbxCs2−xZnCl4 mixed crystals and the KxCs2−xZnCl4 mixed crystals (N).

Figure 6. Heat flow curves of Rb1.89Cs0.11ZnCl4 measured during heating.

thermal anomalies atT = 254 and 170 K (figure 6). Despite the rather small effect, we
can suppose that the transition at 254 K is of second order while the transition at 170 K
is of first order. By analogy with the pure Rb2ZnCl4 compound, we suggest that the first
transition is an N–INC phase transition while the second is an INC–C transition leading to
a ferroelectric phase.

For the other compositions, no significant thermal anomaly was observed, perhaps
because of the very small effects that could not be detected.
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Table 3. Anistropic thermal parameters(Å
2
) in Rb2ZnCl4 at T = 333 K.

Atom U11 U22 U33 U12 U13 U23

Zn 0.0298(5) 0.0373(5) 0.0355(5) 0 0.0005(5) 0
Cl1 0.0158(8) 0.095(5) 0.050(1) 0 −0.007(1) 0
Cl2 0.037(1) 0.128(3) 0.031(1) 0 −0.013(1) 0
Cl3 0.060(1) 0.0458(9) 0.116(2) 0.008(1) 0.031(1) 0.038(1)
Cl4 0.060(1) 0.0458(9) 0.116(2) 0.008(1) 0.031(1) 0.038(1)
Rb1 0.0389(5) 0.0717(7) 0.119(1) 0 0.0083(57) 0
Rb2 0.0358(4) 0.0664(6) 0.0396(5) 0 0.0013(4) 0

Figure 7. A (100) view of the unit cell of Rb2ZnCl4 at T = 333 K.

3.2.2. Thermal agitation of the chlorine atoms.It has been shown that the phase transition
in the Rb2ZnCl4 and K2ZnCl4 compounds can be interpreted as rotation of rigid ZnCl4

tetrahedra mainly around thea direction.
Structural data, and in particular thermal parameters, can be very useful for the prediction

of these rotations and then transitions. For example, table 3 lists the anisotropic thermal
parameters obtained after refinement of the Rb2ZnCl4 structure atT = 333 K (normal
phase) [18]. We observe very large values of the temperature factorsU22 (b direction)
for the Cl1 and Cl2 chlorine atoms, and of U33 (c direction) for the Cl3 and Cl4 chlorine
atoms. The projections of this compound structure along thea axis (figure 7) shows that
these large values of the anisotropic thermal parameters in thec of b directions can be well
related to the oscillations of tetrahedra along thea axis. These oscillations signify the static
rotations which will take place at low temperatures in the incommensurate, and then in the
commensurate phase.

The same abnormal large values are observed for the normal phase of K2ZnCl4 [13], but
not in Cs2ZnCl4 since this latter crystal remains in the normal phase when the temperature
decreases.
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Figure 8. The composition dependence of (a) some thermal parameters and (b) the tetrahedron
volumes, in RbxCs2−xZnCl4 at 293 K.

In order to follow the evolution of these values with the substitution, we report, in
figure 8(a), the dependence of several temperature factor values onx in RbxCs2−xZnCl4.
Moreover, as the presence of an instability is related to the size of the tetrahedra which can
be free or compressed in the lattice, we simultaneously report, in figure 8(b), the dependence
of the composition of the calculated volume of these tetrahedra (the volume is calculated
as described in subsubsection 3.2.3).

Whenx varies from zero to unity, the temperature factors decrease slightly for the Cl2,
Cl3 and Cl4 chlorine atoms while they weakly increase in the case of Cl1. In the same
range of composition, the tetrahedron volume decreases slightly. This exhibits the relative
stability of the structures withx < 1. The tetrahedra are not compressed and no phase
transition is expected when temperature decreases.

On the other hand, fromx = 1 until x = 1.89, the tetrahedron size drops drastically. the
tetrahedra are more and more compressed and their oscillations increase rapidly, as revealed
by the increasing values of the thermal parameters of each chlorine atom. We can conclude
that the structures in the composition rangex > 1 are unstable in thePnma phase and
suggest the phase transitions which were actually observed for compositions nearx = 2, at
lowered temperature.

The same study was made for the KxCs2−xZnCl4 crystals. Figure 9 presents the
composition dependence of thermal parameters and tetrahedron size in KxCs2−xZnCl4. The
results can be compared with the first part(0 6 x 6 1) of the previous figures and
indicate a relative stability of the mixed compounds in theP 212121 space group. This was
confirmed [25] by the absence of an anomaly in the calorimetric and dielectric curves for
0.22 6 x 6 0.85. The KCsZnCl4 compound, which is not only a limit compound but also
a new definite crystal (one K cation in the A2 site and one Cs cation in the A1 one) is
more complex. The thermal parameters of KCsZnCl4 are smaller than those reported for
the mixed compounds, even so, we detected a phase transition atT = 241 K [25].
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Figure 9. The composition dependence of (a) some thermal parameters and (b) the tetrahedron
volumes, in KxCs2−xZnCl4 at 293 K.

3.2.3. Static deviations of ZnCl4.
The distance between Zn and the barycentre B of chlorine atoms.The barycentre position

of the chlorine atoms in ZnCl4 is defined by the equation:

BCEl1 + BCEl2 + BCEl3 + BCEl4 = 0.

As the tetrahedron is not a regular one, Zn and B are not at the same site.
All RbxCs2−xZnCl4 mixed crystals are refined in thePnmaspace group. In this phase,

Cl1 and Cl2 are in them mirror (perpendicular tob), while Cl3 and Cl4 are equivalent due to
this symmetry element; B and Zn are also situated in the mirror and the B–Zn length gives
the anisotropy of the symmetric tetrahedron ZnCl4. Figure 10 exhibits the B–Zn length,
which is about 0.06 Å for almost all the crystals except for the Rb1.89Cs0.11ZnCl4 crystal,
which has a large anisotropy (d(B–Zn) = 0.20 Å). At room temperature this crystal is very
near the incommensurate phase.

The KxCs2−xZnCl4 mixed crystals are refined using theP 212121 space group. In
this phase, the XnCl4 tetrahedron is not symmetric because there is nor mirror: B and
Zn atoms are in general positions, and the B–Zn lengths give an idea of the tetrahedron
distortion. Figure 10 shows that mixed crystals have a length (about 0.80 Å) larger than
that in the pure and limit mixed crystals (Cs2ZnCl4, d(B–Zn) = 0.060 Å and KCsZnCl4,
d(B–Zn) = 0.066 Å), so the disorder of K and Cs at the A2 site seems to increase the
distortion of the ZnCl4 tetrahedron.

Volume of the ZnCl4 tetrahedron.Knowing the positions of the four chlorine atoms, we
calculated the volume of the ZnCl4 tetrahedron for both pure and mixed crystals:V is the

volume for the Cs2ZnCl4 reference crystal (V = 5.88 Å
3
) and V + 1V the volume for

each mixed crystal. The composition dependence of the relative contraction−1V/V in
RbxCs2−xZnCl4 and KxCs2−xZnCl4 is presented in figure 11.

The contraction in the RbxCs2−xZnCl4 mixed crystals has two maxima. The first
maximum (−1V/V = 0.018) occurs when the A1 site is occupied only by caesium
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Figure 10. B–Zn length versusx in the RbxCs2−xZnCl4 (• ) and the KxCs2−xZnCl4 mixed
crystals (N).

Figure 11. The composition dependence of the contraction from the atomic positions of the
chlorine atoms (without approximation) (1) and from the trace of the distorsion symmetric matrix
(first-order approximation) (2). (a) relative to the RbxCs2−xZnCl4 compounds and (b) referred
to the KxCs2−xZnCl4 compounds.

and the A2 site is filled by 50% caesium and 50% rubidium. The second maximum
(−1V/V = 0.027) corresponds to the compositionx = 1.89 for which the crystal is
near the incommensurate phase. We also observe that the contraction is the smallest
for the pure Rb2ZnCl4 crystal (−1V/V = 0.008) and for the Rb1.11Cs0.89ZnCl4 crystal
(−1V/V = 0.009). This latter composition has approximatively one caesium cation in the
A1 site and one rubidium cation in the A2 site.
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In the KxCs2−xZnCl4 mixed crystals, the contraction is nearly constant and about
−1V/V = 0.017 when 0.27 6 x 6 1. The tetrahedron volume is smaller in KCsZnCl4

(−1V/V = 0.016) than in Rb1.11Cs0.89ZnCl4 (−1V/V = 0.009) because in mixed
crystals, with approximately one Cs in the A1 site and one Rb (or K) in the A2 site,
the K atoms compress the tetrahedra more than the Rb atoms.

In most cases, the contraction calculation in the first-order approximation gives roughly
the same results as the calculation without approximation. However, as explained below,
for the KxCs2−xZnCl4 mixed crystals with 0.7 6 x 6 1, the first-order approximation is not
sufficient.

The first-order approximation: the displacement tensor.When we compare the pure
Cs2ZnCl4 crystal and the mixed crystals, we assume that the problem of specifying the
state of rotation and the strain of ZnCl4 is the same as the change of the solid body shape
subjected to stress.

We fix the origin in space [26] and study the displacementsui of the solid body points
with coordinatesxj . For small displacements, the variation ofx with the positions is used
to define nine tensor components:

Tij = ∂ui/∂xj (i, j = 1, 2, 3)

or in the Einstein notation

1ui = Tij 1xj (sum overj ).

To completely determine all nine componentsTij it is necessary to know three different
displacements1u for three different vectors1x with the origin at the same point. In
our case, the choice of the barycentre of chlorine atoms as the vector origin permits us to
calculate the nine componentsTij by using position data of three arbitrary chlorine atoms
among the four.

Similarly, in the case of ZnCl4, the common origin is the barycentre of the four Cl
atoms in the pure Cs2ZnCl4 compound and we choose the four vectors BCEli . In mixed
crystals these vectors become B′CEl′i , with B′ the barycentre of the four chlorines Cl′

i . The
small displacement of BCEli is the vector B′CEl′i − BCEli , which gives the change of the BCEli
distance in pure and mixed crystals.

We introduce the following notation for the distances(p, q, r, s) between the chlorine
atoms and their barycentre in pure Cs2ZnCl4 and for the changes of the distances(u, v, w, t)
in mixed crystals:

p = BECl1 u = BECl1 − B′ ECl′1
q = BECl2 v = BECl2 − B′ ECl′2
r = BECl3 w = BECl3 − B′ ECl′3
s = BECl4 t = BECl4 − B′ ECl′4

The definition of the barycentres B (pure crystal) and B′ (mixed crystal) gives the following
equations:

p + q + r + s = 0 u + v + w + t = 0.

In the first-order linear approximation, we introduce the nine componentsTij of the second-

rank tensor
=
T to express the projections (ui, vi, wi, ti on the axis,i = 1, 2, 3, 1 ona, 2 on

b, 3 onc) of the distance changes as functions of the projections of the lengths (pj , qj , rj ,
sj on the axis,j = 1, 2, 3).
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We write

ui = Tijp
j with sum onj (Einstein notation)

vi = Tij q
j with sum onj (Einstein notation)

wi = Tij r
j with sum onj (Einstein notation)

and

ti = Tij s
j as a verification.

We use the following matrix notation:( u1 v1 w1

u2 v2 w2

u3 v3 w3

)
=

( T11 T12 T13

T21 T22 T23

T31 T32 T33

)( p1 q1 r1

p2 q2 r2

p3 q3 r3

)
or

U = TP

with T the matrix which represents the
=
T tensor,U the matrix of length changes andP the

matrix of lengths.
By calculating theP−1 inverse of matrixP, we obtain theT matrix:

T = UP−1.

The nineTij components were calculated and verificated withti and sj for all mixed
crystals. The symmetric partSij = (Tij + Tji)/2 gives the distortion of the tetrahedron
while the antisymmetric partAij = (Tij − Tji)/2 gives its rotation.

The first-order linear approximation is good if (ui , vi , wi) are small compared to (pj ,
qj , rj ). In this case, the relative change of the tetrahedron volume is approximately

1V/V ∼= S11 + S22 + S33
∼= T11 + T22 + T33

∼= Tr T.

It is equal to the trace of the displacement matrix, which is the same as the trace of the
distortion symmetric matrix. This approximation proves to be good in all cases except for
the KxCs2−xZnCl4 mixed crystal with 0.7 6 x < 1: the changes of the B′ ECli −BECli lengths
compared to the BECli distances are not small enough.

Rotation of the ZnCl4 tetrahedron.The comparison of the tetrahedron in Cs2ZnCl4 and
in mixed crystals shows anω rotation which is defined by the three projections (ω1, ω2,
ω3) on the three axes (a, b andc). These projections are related to the antisymmetric part

of the displacement tensor
=
T by

ω1 = A23 ω2 = A31 ω3 = A12.

|ω| = (180/π)[A2
23 + A2

31 + A2
12]1/2 is the rotation modulus in degrees andαi = ωi/|ω|

(i = 1, 2, 3) the director cosines of the rotation vector.
The results for the two kinds of mixed crystal are shown in figure 12.
For the RbxCs2−xZnCl4 crystals, theω vector is parallel to theb axis. At first, |ω|

increases with increasingx, with a maximum value of 3◦15′ at x = 1.89, then decreases
until 2◦44′ at x = 2. It is interesting to note that this behaviour is similar to the dependence
of the thermal parameterU22(Cl1) on x (figure 8(a)).

For the KxCs2−xZnCl4 crystals, theω vector is not along theb axis, andω1 andω3 are
not equal to zero. The|ωα2| projection as function ofx, given by figure 12(d), shows that
the rotation around theb axis is proportional to the concentrationx of potassium. On the
other hand, the modulus|ω| increases rapidly withx and once again the curve looks like
the U22(Cl1) thermal agitation curve (figure 8(b)).
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Figure 12. (a) Rotation vector modulus|ω| versusx in RbxCs2−xZnCl4; (b) the same in
KxCs2−xZnCl4; (c) director cosinesα1, α2 and α3 of the rotation vector in RbxCs2−xZnCl4;
(d) projection of theω vector, on theb axis, in KxCs2−xZnCl4.

Distortion of the tetrahedron.The threeSii(i = 1, 2, 3) components of the symmetric
matrix S are related to the relative dilatation (or contraction) of the lengths along the three
axesa, b andc. We see the composition dependence of these components in the two kinds
of mixed crystal in figure 13(a) and (b).

We have seen that the cell parameterb is independent of the amountx of Rb (or K) in
the crystals. For exactly the same reason,S22 is nearly zero in all mixed crystals, i.e., the
length do not change along theb axis.

The contraction in thea direction in KxCs2−xZnCl4 increases withx when the cell
parametera decreases, and this contraction is the largest(S11 = −0.029) for the limit crystal
KCsZnCl4. In the RbxCs2−xZnCl4 crystals, the contraction is maximal forx = 0.59 and
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Figure 13. Contraction and dilatation of ZnCl4 along a(S11), b(S22) and c(S33) for
(a) RbxCs2−xZnCl4 and (b) KxCs2−xZnCl4. Shearing of ZnCl4: S23, S31 and S12 for
(c) RbxCs2−xZnCl4 and (d) KxCs2−xZnCl4.

there is a dilatation for the pure crystal(x = 2), which is very near to the incommensurate
phase with a modulation vector along thea axis.

Along thec axis, the value of the contractionS33 is about−0.01 for all mixed crystals
and does not vary significantly.

The three componentsSij (i 6= j) of the symmetric matrixS are related to the shearing
of the tetrahedron:S12 in the (001) plane,S23 in the (100) plane andS31 in the (010) plane.
They are presented in figure 13(c) and (d).

We observe no shearing in the (001) and (100) planes for the RbxCs2−xZnCl4 crystals,
whereas the absolute value of the shearing in the (010) plane increases withx. Theb axis
becomes the ferroelectric axis at low temperature in Rb2ZnCl4 crystals.
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The three shearings exist in KxCs2−xZnCl4 crystals and vary in a complicated manner
with x; the largest values correspond to the KCsZnCl4 limit crystal. This fact may explain
why it is impossible to grow crystals withx > 1.

4. Conclusion

The crystal growth and crystallographic study of KxCs2−xZnCl4 and RbxCs2−xZnCl4 solid
solutions explains the possibility of phase transitions and the existence of a limit crystal
KCsZnCl4.

It would be interesting to complete these results by growing KxCs2−xZnCl4 solid
solutions from melt compounds and obtaining crystallographic data at higher temperature.
The thermal agitation and the cell volume would be larger and the contractions and shearings
of the ZnCl4 tetrahedra would perhaps permit us to obtain solid solutions with 1< x < 2
in the Pnmaphase, like K2ZnCl4 at T > 553 K.

It would be also important to obtain potassium solid solution crystals with 0< x < 0.22
to understand how thePnmaphase withx = 0 and theP 212121 phase withx = 0.22 can
exist at room temperature. The explanation is left for further studies.
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